Skip to main content
Log in

Temporal Dynamics of the Natural and Trimmed Angiosperm Zostera marina L. (Potamogetonales:Zosteraceae), and an Effective Technique for Transplantation of Long Shoots in a Temperate Tidal Zone (Northern China)

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

In China, the coastal eelgrass Zostera marina has decreased dramatically since the 1980s as a result of human-induced habitat deterioration. From March 2009 to June 2010, we investigated the temporal changes in biometric and biomass features of Z. marina from a declined meadow owing to fisheries mechanical destruction in tidal Qingdao Bay, and we conducted an in situ transplantation experiment to develop an effective technique for transplantation of long shoots. Results showed that shoot height and biomass exhibited strong temporal variation, with a maximum shoot height (128.50 ± 17.63 cm) being recorded in June 2009 and minimum value (29.18 ± 3.89 cm) in January 2010. Shoot density in winter (311 ± 51 shoots m−2) was significantly lower than that in summer (545 ± 113 shoots m−2). N and P contents in the rhizome were significantly lower than those in the leaf and leaf sheath. Low C/P ratios (248.82 ± 81.7, 199.8 ± 87.5 and 289.2 ± 95.1 in leaves, leaf sheaths and rhizomes, respectively) suggested P enrichment of the eelgrass. The field recovery experiment showed that the eelgrass shoots had a high resilience even when most leaves were sheared. Long shoots were not suitable to be directly used for transplantation; however, when they were cut shorter (e.g. 18 cm) with most leaves removed, the transplant survivorship reached a high level (ca. 90%). It is suggested that transplantation may be practiced when seagrass meadows (donor beds) reached high density and biomass, and in this case long shoots should be trimmed short before transplanting as a way to improve early transplant success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:1–67

    CAS  Google Scholar 

  • Agren GI (2004) The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters 7(3):185–191

    Article  Google Scholar 

  • Agren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics 39:153–170

    Article  Google Scholar 

  • Atkinson M, Smith S (1983) C: N: P ratios of benthic marine plants. Limnology and Oceanography 28:568–574

    Article  CAS  Google Scholar 

  • Balestri E, Lardicci C (2012) Nursery-propagated plants from seed: a novel tool to improve the effectiveness and sustainability of seagrass restoration. Journal of Applied Ecology 49:1426–1435

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169–193

    Article  Google Scholar 

  • Beck MW, Heck KL Jr, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MR (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641

    Article  Google Scholar 

  • Boese BL, Robbins BD, Thursby G (2005) Desiccation is a limiting factor for eelgrass (Zostera marina L.) distribution in the intertidal zone of a northeastern Pacific (USA) estuary. Botanica Marina 48:274–283

    Article  Google Scholar 

  • Campbell JE, Fourqurean JW (2009) Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida. Marine Ecology Progress Series 387:109–123

    Article  CAS  Google Scholar 

  • Cunha AH, Assis JF, Serrão EA (2013) Seagrasses in Portugal: a most endangered marine habitat. Aquatic Botany 104:193–203

    Article  Google Scholar 

  • Duarte CM (1990) Seagrass nutrient content. Marine Ecology Progress Series 6:201–207

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environmental Conservation 29:192–206

    Article  Google Scholar 

  • Duarte CM, Chiscano CL (1999) Seagrass biomass and production: a re-assessment. Aquatic Botany 65:159–174

    Article  Google Scholar 

  • Duffy JE (2006) Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series 311:233–250

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, HarpoleWS HH, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:1135–1142

    Article  PubMed  Google Scholar 

  • Erftemeijer PLA, Herman PMJ (1994) Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia 99:45–59

    Article  PubMed  Google Scholar 

  • Fishman JR, Orth RJ, Marion S, Bieri J (2004) A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake Bay. Restoration Ecology 12:214–219

    Article  Google Scholar 

  • Fonseca MS, Kenworthy WJ, Courtney FX, Hall MO (1994) Seagrass planting in the southeastern United States: methods for accelerating habitat development. Restoration Ecology 2:198–212

    Article  Google Scholar 

  • Fourqurean JW, Cai Y (2001) Arsenic and phosphorus in seagrass leaves from the Gulf of Mexico. Aquatic Botany 71:247–258

    Article  CAS  Google Scholar 

  • Fourqurean JW, Zieman JC (2002) Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida keys USA. Biogeochemistry 61:229–245

    Article  CAS  Google Scholar 

  • Frazier MR, Lamberson JO, Nelson WG (2014) Intertidal habitat utilization patterns of birds in a Northeast Pacific estuary. Wetlands Ecology and Management 22:451–466

    Article  Google Scholar 

  • Golden RR, Busch KE, Karrh LP, Parham TA, Lewandowski MJ, Naylor MD (2010) Large-scale Zostera marina (eelgrass) restoration in Chesapeake Bay, Maryland, USA. Part II: a comparison of restoration methods in the Patuxent and Potomac Rivers. Restoration Ecology 18:501–513

    Article  Google Scholar 

  • Heck KL, Valentine JF (2006) Plant–herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330:420–436

    Article  Google Scholar 

  • Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001) The importance of seagrass beds as a habitat for fishery species. Oceanography and Marine Biology 9:269–303

    Google Scholar 

  • Kim KY, Choi TS (2004) Variability in abundance and morphological attributes of Zostera marina L. from the southern coast of Korea. Botanica Marina 47:287–294

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450

    Article  Google Scholar 

  • Lee KS, Park JI (2008) An effective transplanting technique using shells for restoration of Zostera marina habitats. Marine Pollution Bulletin 56:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Park SR, Kim JB (2005) Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Marine Biology 147:1091–1108

    Article  Google Scholar 

  • Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350:144–175

    Article  Google Scholar 

  • Li WT, Kim JH, Park JI, Lee KS (2010) Assessing establishment success of Zostera marina transplants through measurements of shoot morphology and growth. Estuarine, Coastal and Shelf Science 88:377–384

    Article  Google Scholar 

  • Li WT, Kim SH, Kim JW, Kim JH, Lee KS (2013) An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary. Estuarine, Coastal and Shelf Science 118:72–79

    Article  Google Scholar 

  • Liu XJ, Zhou Y, Yang HS, Ru SG (2013) Eelgrass detritus as a food source for the sea cucumber Apostichopus japonicus Selenka (Echinidermata: Holothuroidea) in coastal waters of North China:an experimental study in flow-through systems. PLoS One 8:e58293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejrup LB, Pedersen MF (2008) Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany 88:239–246

    Article  Google Scholar 

  • Orth RJ, Moore KA (1984) Seasonal and year-to-year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquatic Botany 4:335–341

    Google Scholar 

  • Orth RJ, Harwell MC, Fishman JR (1999) A rapid and simple method for transplanting eelgrass using single, unanchored shoots. Aquatic Botany 64:77–85

    Article  Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy JW, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Orth RJ, Marion SR, Granger S, Traber M (2009) Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds. Aquatic Botany 90:204–208

    Article  Google Scholar 

  • Paling EI, van Keulen M, Wheeler K, Phillips J, Dyhrberg R (2001) Mechanical seagrass transplantation in Western Australia. Ecological Engineering 16:331–339

    Article  Google Scholar 

  • Park JI, Lee K-S (2007) Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Marine Pollution Bulletin 54:1238–1248

    Article  CAS  PubMed  Google Scholar 

  • Qin LZ, Li WT, Zhang XM, Nie M, Li Y (2014) Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetlands Ecology and Management 22:671–682

    Article  Google Scholar 

  • Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439:457–463

    Article  CAS  PubMed  Google Scholar 

  • Rueda JL, Salas C, Marina P (2008) Seasonal dynamics of a deep subtidal Zostera marina L. bed in southern Spain (western Mediterranean Sea). Botanica Marina 51:92–102

    Article  Google Scholar 

  • Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Kenworthy WJ, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC (2011) Extinction risk assessment of the world’s seagrass species. Biological Conservation 144:1961–1971

    Article  Google Scholar 

  • Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, Andrew J, Seno A (2014) Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Marine Pollution Bulletin 83:408–416

    Article  CAS  PubMed  Google Scholar 

  • Solórzano L, Sharp JH (1980) Determination of total dissolved phosphorus and particulate phosphorus determination in natural waters. Limnology and Oceanography 25:754–758

    Article  Google Scholar 

  • Song XY, Xu Q, Zhou Y, Lin CG, Yang HS (2017) Growth, feed utilization and energy budgets of the sea cucumber Apostichopus japonicus with different diets containing the green tide macroalgae Chaetomorpha linum and the seagrass Zostera marina. Aquaculture. 470:157–163

    Article  Google Scholar 

  • Stapel J, Manuntun R, Hemminga MA (1997) Biomass loss and nutrient redistribution in an Indonesian Thalassia hemprichii seagrass bed following seasonal low tide exposure during daylight. Marine Ecology Progress Series 148:251–262

    Article  Google Scholar 

  • Uhrin AV, Kenworthy WJ, Fonseca MS (2011) Understanding uncertainty in seagrass injury recovery: an information-theoretic approach. Ecological Applications 21:1365–1379

    Article  PubMed  Google Scholar 

  • Unsworth RKF, Cullen LC (2010) Recognising the necessity for indo-Pacific seagrass conservation. Conservation Letters 3:63–73

    Article  Google Scholar 

  • Unsworth RKF, van Keulen M, Coles RG (2014) Seagrass meadows in a globally changing environment. Marine Pollution Bulletin 83:383–386

    Article  CAS  PubMed  Google Scholar 

  • van Katwijk MM, Wijgergangs LJM (2004) Effects of locally varying exposure, sediment type and low-tide water cover on Zostera marina recruitment from seed. Aquatic Botany 80:1–12

    Article  Google Scholar 

  • van Katwijk MM, Thorhaug A, Marba N, Orth RJ, Duarte CM, Kendrick GA, Althuizen IHJ, Balestri E, Bernard G, Cambridge ML, Cunha A, Durance C, Giesen W, Han QY, Hosokawa S, Kiswara W, Komatsu T, Lardicci C, Lee KS, Meinesz A, Nakaoka M, O'Brien KR, Paling EI, Pickerell C, Ransijn AMA, Verduin JJ (2016) Global analysis of seagrass restoration: the importance of large-scale planting. Journal of Applied Ecology 53:567–578

    Article  Google Scholar 

  • Van Lent F, Verschuure JM (1994) Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the South-Western Netherlands. I population dynamics. Aquatic Botany 48:31–58

    Article  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. The American Naturalist 119:553–572

    Article  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy JW, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106:12377–12381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SC, Wang PM, Zhou Y, Zhang XM, Gu RT, Liu XJ, Liu BJ, Song XY, Xu S, Yue SD (2018) New insights into different reproductive effort and sexual recruitment contribution between two geographic Zostera marina L. populations in temperate China. Frontiers in Plant Science 9:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZD, Li SX (1983) Study on the seagrass system classification. Journal of Shandong Marine College 18(4):78–89 (in Chinese, with English abstract)

    Google Scholar 

  • Yang ZD, Wu BL (1984) Seagrass beds and epiorganism in Qingdao coastal waters. Journal of Oceanology of Huanghai & Bohai Seas 2(2):56–67 (in Chinese, with English abstract)

    Google Scholar 

  • Ye CJ, Zhao KF (2002) Advances in the study on the marine higher plant eelgrass (Zostera marina L.) and its adaptation to submerged life in seawater. Chinese Bulletin of Botany 19(2):184–193 (in Chinese, with English abstract)

    Google Scholar 

  • York PH, Gruber RK, Hill R, Ralph PJ, Booth DJ, Macreadie PI (2013) Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS One 8(10):e76377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XM, Zhou Y, Liu P, Wang F, Liu BJ, Liu XJ, Xu Q, Yang HS (2014) Temporal pattern in the bloom-forming macroalgae Chaetomorpha linum and Ulva pertusa in seagrass beds, Swan Lake lagoon, North China. Marine Pollution Bulletin 89:229–238

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Zhou Y, Liu P, Wang F, Liu BJ, Liu XJ, Yang HS (2015) Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): implications for restoration and management. Marine Pollution Bulletin 94:103–113

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang FS, Yang HS, Zhang SM, Ma XN (2003) Comparison of effectiveness of different ashing auxiliaries for determination of phosphorus in natural waters, aquatic organism and sediments by ignition method. Water Research 37:3875–3882

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang HS, Zhang T, Liu SL, Zhang SM, Liu Q, Xiang JH, Zhang FS (2006) Influence of filtering and biodeposition by the cultured scallop Chlamys farreri on benthic-pelagic coupling in a eutrophic bay in China. Marine Ecology Progress Series 317:127–141

    Article  Google Scholar 

  • Zhou Y, Liu P, Liu BJ, Liu XJ, Zhang XM, Wang F, Yang HS (2014) Restoring eelgrass (Zostera marina L.) habitats using a simple and effective transplanting technique. PLoS One 9:e92982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Liu XJ, Liu BJ, Liu P, Zhang XM, Yang HS (2015) Unusual pattern in characteristics of the eelgrass Zostera marina L. in a shallow lagoon (Swan Lake), North China: implications on the importance of seagrass conservation. Aquatic Botany 120:178–184

    Article  Google Scholar 

  • Zimmerman RC, Reguzzoni JL, Alberte RS (1995) Eelgrass (Zostera marina L.) transplants in San Francisco Bay: role of light availability on metabolism, growth and survival. Aquatic Botany 51:67–86

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Shifu Sun for his help in the field survey. This research was supported by the Key Research and Development Project of Shandong Province (2017GHY15111), the National Natural Science Foundation of China (No. 41606192/41176140), the National Key R&D Program of China (2017YFF0206905), the NSFC-Shandong Joint Fund for Marine Science Research Centers (U1606404), the Key Research Project of Frontier Sciences of CAS (QYZDB-SSW-DQC041-1), the Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-023), the National Science & Technology Basic Work Program (2015FY110600), the Creative Team Project of the Laboratory for Marine Ecology and Environmental Science from the Qingdao National Laboratory for Marine Science and Technology (LMEES-CTSP-2018-1), and the Taishan Scholars Program (Distinguished Taishan Scholars).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhou, Y., Liu, B. et al. Temporal Dynamics of the Natural and Trimmed Angiosperm Zostera marina L. (Potamogetonales:Zosteraceae), and an Effective Technique for Transplantation of Long Shoots in a Temperate Tidal Zone (Northern China). Wetlands 39, 1043–1056 (2019). https://doi.org/10.1007/s13157-019-01157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01157-8

Keywords

Navigation